What is the Function of Mitochondria | 10 Important Points

Mitochondria is one of the vital cell organelles present inside the cell.

Eukaryotic cell has at least one or more number of mitochondria depending on the requirement.

But, those cells with high physiological activity posses a higher number of mitochondria. For example muscle cells and nerve cells have large number of them per cell.

Similarly, those organs with low physiological activity have less number of mitochondria.

Further, in a typical cell, their location varies within the cytoplasm.

But in most cells they are concentrated within the regions of high physiological activity.

Structure and Function of Mitochondria

Mitochondria structure is quite compact, and all of its functions happen within this structure.

Structure of mitochondria

They are sac-like double membranes structures present in the cytoplasm of the cell.

They can be seen only under an electron microscope.

Their shape differs from being either spherical, club, oval or even thread like structures.

They are divided into two compartments, i.e. an inner compartment and an outer compartment.

The inner compartment lies within the inner membrane. The outer compartment is in between outer membrane and inner membrane.

The inner compartment is also called as matrix and is surrounded by an inner mitochondrial membrane. This membrane is divided into several folds within which lies the matrix. The mitochondrial membrane also has permeability. Hence, the substances can move from matrix into the outer compartment and vice-versa.

The folding on the inner membrane is termed as cristae which have elementary particles and some enzymes.

The enzymes on cristae and those in the matrix are involved in the production of energy through the breakdown of carbohydrates.

Mitochondria Facts

Credit:By Kelvinsong/commons.wiki

Even fats and proteins converted to some form of carbohydrates mitochondria. Even the single-stranded DNA lies in the matrix.

The outer compartment is surrounded by outer mitochondrial membrane towards exterior and also by inner mitochondrial membrane towards interiors of mitochondria.

This outer mitochondrial membrane is smooth without any folding or projections. It is selectively permeable to substances. That is substance can move from the cytoplasm into the mitochondria and also from mitochondria back into the cytoplasm.

Thus it can act as a reserve for various substances needed for mitochondrial energy generation.

Check out →Mitochondrial characteristics

Mitochondria Function:

1. Cellular respiration: It is a well-known fact that mitochondria are responsible for cellular respiration. The oxygen from lungs is transferred by blood to the cells. In the cells, this oxygen is utilized by mitochondria and then carbon dioxide is released. This carbon dioxide is again carried back to the lungs for expulsion from the body.

What is the Function of Mitochondria-cellular energyCell requires energy for many purposes like DNA, RNA, protein synthesis, cell division etc. Most of the processes occur due to bond formations or with the involvement of enzymes and phosphate. These enzymes and phosphorylations are energy dependent. The required energy is supplied by mitochondria to the cell.

2. Cellular energy production: Mitochondria produce the energy as ATP (adenosine triphosphate) by oxidative phosphorylation. This comes from the breakdown of carbohydrate substrates in the presence of oxygen.

Once we consume food, it is digested and absorbed into the blood as glucose. This is supplied to each and every cell and organ in the body. The glucose is then broken down to release the energy. This is how the food in the body is converted to energy.

Check out→How food is converted to energy in the body for more details.

3. Calcium homeostasis: Mitochondria is involved in calcium homeostasis inside the cell. Calcium is taken into the cell from outside through the cell membrane. This calcium is stored in calcium vesicles inside the cell. But when required, calcium is released and again stored in the vesicles.

mitochondria function calcium homeostasis

Mitochondria with large amounts of calcium and reactive oxidative radicals. [Image credit:researchgate]

However, mitochondria also take up calcium and also release it back into cytoplasm. Read for more on mitochondria and calcium

4. Promote cell cell growth and multiplication: Mitochondria are required for cell growth and multiplication. They form a network of tubules to enhance protein synthesis. Specifically a protein called cyclin is formed which acts as a check point protein. Its role is  to ensure the cell to undergo division at right time when all the aspects are ready for the process.

5. Role in cell death: Mitochondria are also responsible for programmed cell death. This is called as apoptotic cell death. It occurs mostly in conditions of injury or irreversible damage to the cell. The membrane of mitochondria releases caspases which are apoptosis factors.

mitochondrial function cell death

Mitochondria during injury can leak apoptotic proteins which activate cell death mechanism. (Image:researchgate)

Further, disruption of mitochondria function can lead to sudden stoppage of energy supply leading to shock and immediate death.

6. Generate oxidative radicals: They also generate oxidative radicals during energy formation. These oxidative radicals are necessary for various other reactions. But the main contribution of these oxidative radicals is in ageing.

7. Support nerve conduction: Mitochondria support nerve conduction by helping neurotransmitter release.

mitochondria function-neurotransmitter release

Mitochondria help in release of neurotransmitters at the nerve ending for nerve conduction. (Ca++ = calcium) [By: nature.com]

Hence, there are more number of mitochondria near the nerve endings, especially at the synapse. These mitochondria produce sufficient energy in the form of APT. Further, they also release calcium into the cytoplasm for the release of neurotransmitters at the nerve junctions.

8. Organs of metabolism: These are the cell organelles where the citric acid cycle or TCA cycle (tricarboxylic acid cycle) and other respiratory cycles of the cell take place.

9. Synthesize bio-molecules: Many bi-products like glutarate, glyco-oxalic acid are produced during the TCA cycle chemical reactions. These bi-products are further utilized by the cell. They form glutamine, glycine like amino acids which are essential for normal physiology.

10. Contribute to diseases: Abnormalities in mitochondria can lead to many diseases like mood disorders, neurodegeneration, cardiac problems, cancer etc.

Click Here to Leave a Comment Below 3 comments